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Abstract

A phenomenological model of axial solids mixing in a circulating fluidized bed is formulated. The model allows for

main specific features of the process: ascending motion of particles in the core zone and their descending motion in the

annular zone (inner circulation of solids); substantial changes of particle concentration, sizes of core and annular zones

over the bed height; net circulation of solids and the effect of the bottom bed on the process. The validity of initial

postulates is confirmed by comparison of calculated and experimental curves of mixing.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

At present the technology of a circulating fluidized

bed (CFB) is widely used in industry and power engi-

neering [1,2]. Due to comparatively small time of re-

search, main regularities of heat and mass transfer in

CFB have not been studied adequately which makes

development and designing of new large-scale appara-

tuses with CFB difficult. This refers, to a full extent, to

solids mixing the studies of which are of practical im-

portance for processes where continuous treatment of

particles (drying, firing, combustion, etc.) is imple-

mented or these particles gradually change their char-

acteristics and require replacement (catalyst poisoning).

Moreover, the character of solids mixing due to their

1000-fold higher bulk heat capacity, as compared with

gas, determines the mechanism of heat transfer and

leveling of temperatures in the apparatus.

By virtue of known [1] special features of CFB and its

inner hydrodynamics (substantial nonuniformity of

particle concentration both over the riser height and in

their horizontal cross-section, intense inner circulation

of solids, etc.), the process of solids mixing in this system

is rather complex for both experimental study and its

mathematical modeling. Now, the literature contains

only fragmentary data on the laws governing the process

which is insufficient for quantitatively, and often quali-
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tative, evaluation of the effect of different factors on the

intensity of solids mixing. The main difficulty of inves-

tigations is in correct interpretation of the obtained

experimental data which is directly connected with a

rational choice of the physical model of the process.

The simplest one-zone model with the only parame-

ter––axial solids dispersion coefficient––was used in [3]

for analysis of experimental solids residence time dis-

tributions in CFB with a diameter 0.152 and 0.305 m. A

two-parameter model, which involves the particle ve-

locity and axial solids dispersion coefficient, was used in

[4] for analysis of the experiments on mixing of particles

in CFB with a diameter 0.14 m. The authors do not give

recommendations for determination of particle velocity.

In [5], a more complex two-parameter two-dimensional

(along the coordinates r and x) model which allows for a

real structure of particle flows in CFB (ascending mo-

tion in the core zone and descending motion near the

riser walls) and radial solids dispersion. The model

considered a partial case of constant concentration

of particles over the riser height, which considerable

limited the range of its use. In [6], a rather complex

multiparameter circulation model of solids mixing is

suggested; the model directly allows for the two-zone

structure of CFB. A considerable drawback of the

model is in incorrect writing of diffusion and exchange

terms which do not disappear at large times when the

process of mixing ends and c1 ¼ c2 ¼ c1. It should be

noted that this refers, to the same measure, to the above-

mentioned models where the form of presentation of

diffusion terms follows from the Fick law for systems
ed.
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Nomenclature

A part of the horizontal cross-section of the

riser occupied by ascending particles (the

core zone)

B part of the horizontal cross-section of the

riser occupied by descending particles (an-

nular zone)

c1 ¼ c�1=q1 and c2 ¼ c�2=q2 dimensionless concentra-

tions of marked particles in the core zone

and the annular zone

c�1, c
�
2 concentrations of marked particles in the

core zone and the annular zone

c0 initial dimensionless concentration of

marked particles in x ¼ H0

c ¼ Ac1 þ Bc2 mean dimensionless concentration of

marked particles

c1 limt!1 c
D ðpl=q2Þðu1u2=b�Þ
D1 limDðu1 ! 1; u2 ! 1; b� ! 1Þ
D1;D2;E axial solids despersion coefficients

Frt ¼ ðu� utÞ2=gH Froude number

g free-fall acceleration

H riser height

H0 height of the bottom bed

H 0
0 H0=H

ji diffusion flow of marked particles

Js net solids flow

J s ¼ Js=qsðu� utÞ dimensionless net solids flow

l Bq2

p Aq1

Pec ¼ ðu� utÞ=b�H Peclet numbers

Ped ¼ ðu� utÞH=E
Pec ¼ Pec= 1þ 0:82ðu01u02=ðu01 þ u02ÞÞPecð1=x0Þ

� �
r radial coordinate

t time

t0 ¼ tðu� utÞ=H dimensionless time

Dt recirculation time (time interval between

escape of particles from the upper part of

the riser to entry to its base)

Dt0 Dtðu� utÞ=H
t0d tdðu� utÞ=H
Dtr time in which the particles in the core zone

pass the part of the riser from x ¼ H0 to

x ¼ H
T Dtr þ Dt recirculation period

T 0 T ðu� utÞ=H
u superficial gas velocity

ut single-particle terminal velocity

u1; u2 velocities or particles in the core zone and

the annular zone

u01 u1=ðu� utÞ; u02 ¼ u2=ðu� utÞ;
x vertical coordinate

x0 x=H

Greek symbols

b� exchange coefficient

b1 coefficient introduced in (11)

b b�q
b bþ pb1

e porosity

q1; q2 densities of the bed in the core and annular

zones

q Aq1 þ Bq2 mean (over the horizontal cross-

section of the bed) density of the bed

qs density of particles

Subscripts

1 core zone

2 annular zone

c circulation model (35)–(37)

d diffusion in Eqs. (44), (45), delay

fb fluidized bed near the gas distributor (bot-

tom bed)

r radial

s solids

t conditions of floating of an single particle.
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with constant density. Since, as is known, CFB is a

system where density changes substantially in both

horizontal ad vertical directions, the fact mentioned

greatly restricts the applicability range of these models.

2. Phenomenological solids mixing model

The main assumptions which form the basis of the

model are the following:

1. Ascending particle motion with velocity u1 in the cen-

tral part of the bed (core zone) and descending mo-

tion with velocity u2 in the annular zone form inner
circulation of the solid phase (Fig. 1). The following

formulas are used for calculation of these velocities

[7,8]

u1 ¼ u� ut ½7�; ð1Þ

u2 ¼ 0:1ðu� utÞFr�0:7
t ½8�: ð2Þ

As is seen, velocities u1 and u2 are constant over the

bed height.

2. The existence of outer (net) circulation of solids,

which is produced by solids flow Js escaping from

the upper part of the riser and then coming back to

the bed base, is taken into account (Fig. 1).



1Fig. 1. Model of axial solids mixing in CFB.

1 In this case, a specific form of this quantity is not of

principal value, since in what follows we use only the equality

Ab1q1 ¼ �u1ðoAq1=oxÞ which follows from (11) under station-

ary conditions.

Yu.S. Teplitsky et al. / International Journal of Heat and Mass Transfer 46 (2003) 4335–4343 4337
3. In each horizontal cross-section of the riser there

holds the equality

Js ¼ Aq1u1 � Bq2u2; ð3Þ

which determines a value of the specific circulating

particle flow Js (constant over the bed height and

determining the intensity of net circulation of solids).

4. Local concentrations of particles in core zone (q1)

and annular zone (q2) are linked by the correlation

q2 ¼ nq1; ð4Þ

where n is the constant coefficient. By the data of [9],

n ’ 2–3.

5. A mean (over the horizontal cross-section of the ri-

ser) density of the bed q ¼ Aq1 þ Bq2 is variable over

the height and is described by an empirical formula

[10]:

q
qs

¼ J sðx0Þ�0:82
; H 0

0 6 x0 6 1: ð5Þ

6. Relative parts of the core zone (A) and the annular

zone (B) change with the height, here in any horizon-

tal cross-section of the bed
Aþ B ¼ 1 ð6Þ

Formulas for calculation of A and B can be easily

obtained from (3)–(6):

A ¼ n
u02 þ ðx0Þ0:82

u01 þ nu02 � ðx0Þ0:82ð1� nÞ
; ð7Þ

B ¼ u01 � ðx0Þ0:82

u01 þ nu02 � ðx0Þ0:82ð1� nÞ
; ð8Þ

for H 0
6 x0 6 1.

7. In the lower part of the bed there exists a zone with

constant density and ideal mixing of particles––bot-

tom bed (Fig. 1). Its height is calculated by [11]

H 0
0 ¼ 1:25Fr�0:8

t J
1:1

s : ð9Þ

By the data of [12], bottom bed porosity weakly de-

pends on the velocity of gas and is a rather stable

quantity.

In [11], it is suggested to determine it by the formula

efb ¼ 1� 0:33Fr�0:045
t ; ð10Þ

8. Particle exchange occurs between the core and annu-

lar zones. The exchange coefficient b� is taken to be

independent of the vertical coordinate x.
9. Dispersion transfer of marked particles with the coef-

ficients D1 and D2 takes place in the core and annular

zones, respectively, in addition to convective transfer.

0. Changes of the characteristics of CFB in horizontal

direction are neglected.

We first write the continuity equations for solids in

the core zone and annular zones

oAq1

ot
þ u1

oAq1

ox
¼ �Ab1q1; ð11Þ

oBq2

ot
� u2

oBq2

ox
¼ Ab1q1: ð12Þ

The quantity Ab1q1
1 allows for (within the frame-

work of the one-dimensional model) the existence of a

radial particle flow Jr from the core zone to the annular

zone (Fig. 2), which provides the experimentally ob-

served decrease of densities q1 and q2 with a height at

practically constant velocities u1 and u2.
Having summed (11) and (12), with account for (3)

we obtain the continuity equation for the flow of outer

circulation of solids



Fig. 2. Schematic of particle flows in CFB.

4338 Yu.S. Teplitsky et al. / International Journal of Heat and Mass Transfer 46 (2003) 4335–4343
oq
ot

þ oJs
ox

¼ 0; ð13Þ

which leads to constancy of Js under stationary condi-

tions.

Taking the above assumptions into account, we for-

mulate the system of equations which describe axial

solids mixing in the CFB riser:

the core zone

oAq1c1
ot

þ u1
oAq1c1
ox

¼ o

ox
Aq1D1

oc1
ox

� �
þ b�qðc2 � c1Þ

� Aq1b1c1; ð14Þ

the annular zone

oBq2c2
ot

� u2
oBq2c2
ox

¼ o

ox
Bq2D2

oc2
ox

� �
þ b�qðc1 � c2Þ

þ Aq1b1c1: ð15Þ

The form of the diffusion terms in (14) and (15) corre-

sponds to the Fick law in medium with a variable den-

sity [13]

ji ¼ �qiDi
oci
ox

; i ¼ 1; 2: ð16Þ

The contribution of these terms is likely to be estimated

by the quantity 1=fPePe ¼ eDD=ðu� utÞH , where eDD is the

coefficient of the order of D1 and D2. With account for

the fact that eDD ffi 10�3 m2/s [1, p. 345], we have the es-
timate for 1=fPePe: 1=fPePe ’ 0:2� 10�4 at H ¼ 10 m and

u� ut ¼ 5 m/s which indicates that the share of diffusion

terms in (14) and (15) is negligibly small. Taking this fact

and the continuity equations (11) and (12) into account,

we can represent the system of equations (14) and (15) as

Aq1

oc1
ot

þ Aq1u1
oc1
ox

¼ b�qðc2 � c1Þ; ð17Þ

Bq2

oc2
ot

� Bq2u2
oc2
ox

¼ ðb�qþ Aq1b1Þðc1 � c2Þ: ð18Þ

Despite the seeming simplicity, the system of equations

(17), (18) has a rich essence and reflects virtually all

important aspects of axial solids mixing in CFB.

For further analysis we introduce the notation:

p ¼ Aq1; l ¼ Bq2; b ¼ b�q; b ¼ bþ Aq1b1. Eliminating

in turn c1 and c2 from (17) and (18), we reduce these

equations to the form

1

�
þ p

l
b
b
� u2

o

ox
p
b

� ��
oc1
ot

þ p
l
b
b
u1

�
� u2

� u1u2
o

ox
p
b

� ��
oc1
ox

þ p
b
o2c1
ot2

þ p
b
ðu1 � u2Þ

o2c1
otox

� p
b
u1u2

o2c1
ox2

¼ 0; ð19Þ

1

�
þ l
p
b

b
þ u1

o

ox
l

b

� ��
oc2
ot

þ
�
� l
p
b

b
u2 þ u1

� u1u2
o

ox
l

b

� ��
oc2
ox

þ l

b

o2c2
ot2

þ l

b
ðu1 � u2Þ

o2c2
otox

� l

b
u1u2

o2c2
ox2

¼ 0: ð20Þ

Eqs. (19) and (20) are the second-order hyperbolic

equations. We consider the important partial cases.

1. Large times. As is shown in [14], when tP 10=b�, it is

admissible to neglect the terms with o2=ot2 and

o2=otox in the equations of type (19) and (20).

With this in mind, we obtain

q

�
� 1

u1

o

ox
ðqDÞ

�
oc1
ot

þ Js

�
� o

ox
ðqDÞ

�
oc1
ox

¼ qD
o2c1
ox2

; ð21Þ

q

�
þ 1

u2

o

ox
b

b
qD

� ��
oc2
ot

þ Js

�
� o

ox
b

b
qD

� ��
oc2
ox

¼ b

b
qD

o2c2
ox2

; ð22Þ

where D ¼ ðpl=q2Þðu1u2=b�Þ. This coefficient can be

treated as the coefficient of axial ‘‘Taylor’’ diffusion

which exists in the systems with a nonuniform field of

axial velocities and exchange of substance in a radial

direction [15]. Eqs. (21) and (22) are the parabolic
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equations of nonstationary convective diffusion with

variable coefficients of dispersion D and ðb=bÞD in

the core and the annular zones, respectively.

2. Stationary conditions of mixing. These conditions are

realized, as is known, at constant supply and removal

of marked particles. The case is described by the fol-

lowing equations:

Js

�
� o

ox
ðqDÞ

�
oc1
ox

¼ qD
o2c1
ox2

; ð23Þ

Js

�
� o

ox
b

b
qD

� ��
oc2
ox

¼ b

b
qD

o2c2
ox2

: ð24Þ

3. An infinitely large coefficient of exchange b�, at which

any difference between the phases disappears. Here

two cases are possible:

(a) u1;u2 !1, then limb�!1 plu1u2=q2b� ¼ D1 <1.

The system of equations (19), (20) is reduced to the

only equation

q
oc
ot

þ Js

�
� o

ox
ðqD1Þ

�
oc
ox

¼ qD1
o2c
ox2

; ð25Þ

which is the equation of convective diffusion with a

variable coefficient of dispersion D1 in the medium

with variable density q.
(b) u1; u2 < 1, then D1 ¼ 0 and it follows from (25)

q
oc
ot

þ Js
oc
ox

¼ 0: ð26Þ

Eq. (26) describes convective transfer of marked

particles at a velocity Js=q.
4. The absence of exchange between the phases ðb� ¼ 0Þ.

In this case, the phases are as in ‘‘quasi-isolated’’ and

only one-sided transfer of marked particles from the

core zone to the annular zone by the flow Jr occurs
(Fig. 2). The initial system (17) and (18) takes the

form

oc1
ot

þ u1
oc1
ox

¼ 0; ð27Þ

oc2
ot

� u2
oc2
ox

¼ p
l
b1ðc1 � c2Þ: ð28Þ

Eqs. (27) and (28) describe convective transfer of

marked particles upward with a velocity u1 (the core

zone) and downward with a velocity u2 (the annular

zone).
2 It is assumed that all particles escaping from the riser again

reach CFB in time Dt. The absence of recirculation is likely to

correspond the condition Dt ¼ 1 ðT ¼ 1Þ.
3. Numerical modeling of axial solids mixing in CFB

The system of equations (17) and (18) was used for

numerical modeling of mixing of marked particles in-

troduced at the initial instant of time to the bottom bed

(Fig. 1). Such introduction of marked particles is most
often used in experiments. The corresponding boundary-

value problem has the form

oc1
ot

þ u1
oc1
ox

¼ b
p
ðc2 � c1Þ; ð29Þ

oc2
ot

� u2
oc2
ox

¼ b
l
ðc1 � c2Þ: ð30Þ

The initial and boundary conditions are:

c1ð0; xÞ ¼ c2ð0; xÞ ¼ 0; c1ð0;H0Þ ¼ c0;

x ¼ H : c1 ¼ c2 ¼ c x ¼ H0 : ð31Þ

(a) t6 T : qfbH0ðoc1=otÞ þ pu1c1 � lu2c2 ¼ 0;

(b) t > T : qfbH0ðoc1=otÞ þ pu1c1 � lu2c2
¼ Jscðt � Dt;HÞ. 2
We note that the boundary condition at x ¼ H is the

consequence of the equation

pu1c1 � lu2c2 ¼ Jsc; ð32Þ

which is the balance of marked particle flows at the riser

outlet provided that mixing of particles in the outlet

zone is good (Fig. 1). The quantities p and l which enter

into (29)–(31) are related to a mean density of the bed

q ¼ p þ l. Allowing for this fact, we can easily obtain

from (4), (7) and (8) the formulas for calculation of p
and l

p ¼ q
A

Aþ Bn
¼ q

u02 þ ðx0Þ0:82

u01 þ u02
; ð33Þ

l ¼ q
Bn

Aþ Bn
¼ q

u01 � ðx0Þ0:82

u01 þ u02
: ð34Þ

Using (33) and (34) we write the system of equations

(29)–(31) in a dimensionless form

oc1
ot0

þ u01
oc1
ox0

¼ 1

Pec

u01 þ u02
u02 þ ðx0Þ0:82

ðc2 � c1Þ; ð35Þ

oc2
ot0

� u02
oc2
ox0

¼ 1

Pec

u01 þ u02
u01 � ðx0Þ0:82

ðc1 � c2Þ: ð36Þ

The initial and boundary conditions

c1ð0; x0Þ ¼ c2ð0; x0Þ ¼ 0;

c1ð0;H 0
0Þ ¼ c0;

c1 ¼ c2 ¼ c; x0 ¼ 1;

x0 ¼ H 0
0 :

ð37Þ



Fig. 3. Outlet curves of mixing for different values of Pec
(m ¼ 1:208, H 0

0 ¼ 0:01, c1 ¼ 0:144, c0 ¼ 1, Js ¼ 50 kg/m2 s,

u ¼ 6 m/s, H ¼ 12 m).
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ðaÞ t0 6 T 0 : mH 0
0

oc1
ot0

þ u02 þ ðH 0
0Þ

0:82

u01 þ u02
u01c1

� u01 � ðH 0
0Þ

0:82

u01 þ u02
u02c2 ¼ 0;

ðbÞ t0 > T 0 : mH 0
0

oc1
ot0

þ u02 þ ðH 0
0Þ

0:82

u01 þ u02
u01c1

� u01 � ðH 0
0Þ

0:82

u01 þ u02
u02c2 ¼ ðH 0

0Þ
0:82cðt0 � Dt0; 1Þ:

The quantity m ¼ qfb=qðH0Þ is calculated by the formula

m ¼ 0:4Fr�0:7
t which follows from (5), (9), and (10). As is

seen, the system of equations (35)–(37) involves only one

unknown parameter––the exchange coefficient b� which

enters into the numbers Pec and Pec.
The boundary-value problem (35)–(37) was solved

numerically by the finite-difference method. An implicit

scheme of first order of accuracy was used. The com-

putational region H 0
0 6 x0 6 1 was divided to 1000 inter-

vals. Fig. 3 presents calculation of the concentration of

marked particles at the riser outlet ðc1 ¼ c2 ¼ cÞ at dif-
ferent values of Pec. For simplicity, calculations are

made for the case Dt ¼ 0 (marked particles is instantly

carried from the outlet point of the riser to the point of

re-entry). The calculation for the case Pec ¼ 0 is given in

Appendix A. A stationary value of concentration c1 can

be easily calculated by the formula

c1 ¼ c0
1þ 5:5

m ððH 0
0Þ

�0:18 � 1Þ
; ð38Þ

which follows from the equation of material balance of

marked particles. Fig. 4 gives the comparison of the data

calculated at Dt ¼ 1 and experimental data of [16]

where the quantities c1 and c2 were measured at different

points of the riser with a diameter 0.305 m. A value of b�
obtained by the least-squares method is equal to 0.07

s�1. We note that the given mixing curves which corre-

spond to Pec ¼ 0 are calculated by the formula

c ¼ c0 exp

 
� ðH 0

0Þ
�0:18

m
ðt0 � t0dÞ

!
; ð39Þ

which is the solution of equation

qfbH0

dc
dt

þ Jsc ¼ 0; ð40Þ

proceeding from the boundary condition (a) in (31) at

c1 ¼ c2 ¼ c. According to Eq. (26) the time of particle

arrival at the given point of the riser is here determined

as

td ¼
1

Js

Z x

H0

qdx ¼ 5:5H
u� ut

ððx0Þ0:18 � ðH 0
0Þ

0:18Þ: ð41Þ
As is seen from Fig. 4, the calculated mixing curves are

in good agreement with experimentally obtained values

of concentrations c1 and c2 [16] and allow correct de-

scription of qualitative differences of the functions c1ðtÞ
and c2ðtÞ which are observed in the experiment.

For comparison we considered a one-zone diffusion

model with a constant axial solids dispersion coefficient

E. The form of the equation is similar to (25):

q
oc
ot

þ Js

�
� o

ox
ðqEÞ

�
oc
ox

¼ qE
o2c
ox2

: ð42Þ

The initial and boundary conditions correspond to (31):

cð0; xÞ ¼ 0; cð0;H0Þ ¼ c0;

x ¼ H ;
oc
ox

¼ 0; x ¼ H0;
ð43Þ



Fig. 4. Comparison of calculated mixing curves with experi-

mental data [16]. (a) x0 ¼ 0:55, (b) x0 ¼ 0:32, (c) x0 ¼ 0:75. (�)

Experimental points [16] (m ¼ 1:6, H 0
0 ¼ 0:074, c0 ¼ 0:021,

Js ¼ 147 kg/m2 s, u ¼ 4:57 m/s, H ¼ 12:2 m).
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ðaÞ t6 T : qfbH0

oc
ot

þ Jsc� qE
oc
ox

¼ 0;

ðbÞ t > T : qfbH0

oc
ot

þ Jsc� qE
oc
ox

¼ Jscðt � Dt;HÞ:

Using the expression for q from (5), we write the system

of equations (42) and (43) in a dimensionless form

oc
ot0

þ ðx0Þ0:82
�

þ 0:82

Pedx0

�
oc
ox0

¼ 1

Ped

o2c

oðx0Þ2
: ð44Þ

The initial and boundary conditions are

cð0; x0Þ ¼ 0; cð0;H 0
0Þ ¼ c0;

x0 ¼ 1;
oc
ox0

¼ 0; x0 ¼ H 0
0 :

ð45Þ

ðaÞ t0 6 T 0 : mH 0
0

oc
ot0

þ ðH 0
0Þ

0:82c� 1

Ped

oc
ox0

¼ 0;

ðbÞ t0 > T 0 : mH 0
0

oc
ot0

þ ðH 0
0Þ

0:82c� 1

Ped

oc
ox0

¼ ðH 0
0Þ

0:82cðt0 � Dt0; 1Þ:

Fig. 5 presents the numerically obtained solutions of

(44) and (45) for different values of Ped at the point

x0 ¼ 0:55. It follows from comparison of Figs. 4 and 5:

1. The diffusion model is capable of describing the ex-

perimental data only at sufficiently large times

ðt0 P 1Þ. At small times, the diffusion model, in con-

trast to circulation one, cannot even give qualitative

agreement with experimental data and describe differ-

ent forms of the mixing curves in the core and annu-

lar zones.
Fig. 5. Mixing curves calculated by the diffusion model at

different values of the Ped number (x0 ¼ 0:55). (�) Experimental

data [16] for concentration c1.
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2. The solutions of (44) and (45) at large Ped (small co-

efficients E) virtually coincide with the solutions of

(35)–(37) at small Pec (large coefficients of exchange

b�). This corresponds to transition of Eq. (42) at

small E to (26) and coincidence of the corresponding

boundary conditions.
4. Conclusions

A two-zone model of axial solids mixing in CFB is

formulated. The model allows for main special features

of the process and, as is shown, is capable of satisfactory

description the experimental mixing curves. The sim-

plicity and comprehensive substation of Eqs. (17) and

(18) make it possible to effectively use them for practical

calculations.

Further investigations presuppose a detailed study of

the dependence of the most important parameter of the

model––the coefficient of exchange b�––on the geometric

(H ;D) and hydrodynamic (Js; u) characteristics of CFB.
Appendix A. The response function at the point x0 ¼ 1 at

Pec ¼ 0 (Fig. 3)

A dimensionless time of arrival of particles at the

point x0 ¼ 1 (the delay time) t0d is found from Eq. (41)

t0d ¼ 5:5 1
�

� ðH 0
0Þ

0:18
�
ffi 3:16: ðA:1Þ

Since the situation at the point x0 ¼ 1 exactly repeats the

situation x0 ¼ H 0
0 with delay t0d ¼ Dt0r (at Dt0 ¼ 0), the

form of the response function at the CFB outlet can be

easily obtained, with allowance for delay, from the so-

lutions of the equations which describe two versions of

the boundary condition at x0 ¼ H 0
0 in (37). At c1 ¼ c2 ¼ c

and Dt0 ¼ 0 they have the form

ðaÞ t0 6 t0d : mH 0
0

dc
dt0

þ cðH 0
0Þ

0:82 ¼ 0; ðA:2Þ

ðbÞ t0 > t0d : mH 0
0

oc
ot0

þ cðH 0
0Þ

0:82 ¼ ðH 0
0Þ

0:82cðt0; 1Þ:

ðA:3Þ

The solution of Eq. (A.2) with the initial condition

cðt0dÞ ¼ c0 ¼ 1 has the form

cðt0Þ ¼ exp

 
� ðH 0

0Þ
�0:18

m
ðt0 � t0dÞ

!
: ðA:4Þ

The function (A.4) describes the shape of the mixing

curve at x0 ¼ 1 within the range of times t0d 6 t0 6 2t0d
when the effect of solids recirculation does not begin to

manifest itself. At larger times, one should use Eq. (A.3)

which allows for recirculation of particles. Within the
range of times 2t0d 6 t0 6 30d the form of the response

function follows from the solution of Eq. (A.3), which,

with account for (A.4) has the form

mH 0
0

dc
dt0

þ cðH 0
0Þ

0:82 ¼ ðH 0
0Þ

0:82
exp

 
�ðH 0

0Þ
�0:18

m
ðt0 � 2t0dÞ

!
:

ðA:5Þ

The role of the initial condition for (A.5) is played by the

relation

cð2t0dÞ ¼ exp

 
� ðH 0

0Þ
�0:18

m
t0d

!
; ðA:6Þ

which follows from (A.4) at t0 ¼ 2t0d. The solution of

(A.5) and (A.6) has the form

cðt0Þ ¼ ðH 0
0Þ

�0:18

m
ðt0 � 2t0dÞ exp

 
� ðH 0

0Þ
�0:18

m
ðt0 � 2t0dÞ

!

þ exp

 
� ðH 0

0Þ
�0:18

m
ðt0 � t0dÞ

!
: ðA:7Þ

For the next period of time 3t0d 6 t0 6 4t0d calculation of

the response functions follows from the solution of

equation

mH 0
0

dc
dt0

þ cðH 0
0Þ

0:82 ¼ ðH 0
0Þ

0:82 ðH 0
0Þ

�0:18

m
ðt0

 
� 3t0dÞ

� exp

 
� ðH 0

0Þ
�0:18

m
ðt0 � 3t0dÞ

!

þ exp

 
� ðH 0

0Þ
�0:18

m
ðt0 � 2t0dÞ

!!
;

ðA:8Þ

with the initial condition following from (A.7) at t0 ¼ 3t0d

cð3t0dÞ ¼
ðH 0

0Þ
�0:18

m
t0d exp

 
� ðH 0

0Þ
�0:18

m
t0d

!

þ exp

 
� ðH 0

0Þ
�0:18

m
2t0d

!
ðA:9Þ

The solution of (A.8) and (A.9) has the form

cðt0Þ ¼ ðH 0
0Þ

�0:18

m

 !2

ðt0 � 3t0dÞ
2

2

0@ þ ðH 0
0Þ

�0:18

m
ðt0 � 3t0dÞ

� exp

 
� ðH 0

0Þ
�0:18

m
t0d

!
þ ðH 0

0Þ
�0:18

m
t0d

� exp

 
� ðH 0

0Þ
�0:18

m
t0d

!
þ exp

 
� 2ðH 0

0Þ
�0:18

m
t0d

!1A
� exp

 
� ðH 0

0Þ
�0:18

m
ðt0 � 3t0dÞ

!
ðA:10Þ
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Calculation of subsequent periods of time is similar. Fig.

3 shows the response function for Pec ¼ 0 constructed by

Eqs. (A.4), (A.7) and (A.10).
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